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General  formulas for the rotational averages of two electron integrals with 
arbitrary combinations of spherical tensors in standard, Cartesian, and 
equivalent form are presented. The way in which the to parameters  of CDP 
type calculations can be obtained from rotational averages is discussed, and 
it is shown from numerical results that the interpretation of the to parameters  
as space averages is compatible up to d orbitals with the CDP invariance 
requirements.  
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1. Introduction 

Electron-electron interaction terms entail the most expense in quantum chemical 
calculations of molecules and aggregates. In a recent paper  [1] we have shown 
how two electron integrals over basis functions can be neglected in a systematic 
way without violating transformation invariance. In particular it was found that 
groups of integrals can be replaced by their space averages dubbed to parameters  
in [1]. The use of such space averages could be of particular interest also in the 
calculation of intermolecular interactions in systems with a random or rapidly 
changing orientation of the molecules. 

Formulas to evaluate the to parameters  from exact integrals have been given in 
[1] for basis functions up to 3p orbitals in Cartesian form. In this work we 
present first the formulas for general rotational averages of two electron integrals 
with arbitrary combinations of basis functions, with the only requirement  that 
their angular part  must span representations of 0+(3). We then show how the 
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space averages for CDP calculations are related to these rotational averages, 
and how to parameters can be defined for real d orbitals. 

The radial parts of the basis functions as well as the electron-electron interaction 
operator are omitted in our discussion because they are scalars and remain 
invariant under the operations of 0(3). Thus, the angular part only of the basis 
functions is of concern to us. It can always be expressed by linear combinations 
of spherical harmonics. We therefore first derive the rotational averages of 
spherical harmonics in standard form [2] with the phase convention as used by 
Condon and Shortley [3], and use this result in turn to evaluate the rotational 
averages of two electron integrals over other basis functions. 

2. Rotational Averages of Products of Standard Spherical Harmonics 

The rotational average of a two electron integral with the standard spherical 
harmonics y t~ located at the centers A, B, C, and D can be written as 

2~" ~r 2vr 

da dfl sin B dy D(afl3")( Y.A Yns I--no--.o, 
Vta rIB Vtc Vtr, ~-  

Io d~ dl3sinBIo dy 

(1) 

a, /3, and 3' are the Eulerian angles with the integration extending over the 
domain of their allowed ranges, and/~(a/33") is the rotation operator effecting 
a rotation of the coordinate system by positive angles. The effect of D(a/3y) on 
a single function is given by 

t (l) D(a~y) y t  = Z Ym~,~n(afl3") (2) 
m 

with ~ ) ,  representing elements of Wigner rotation matrices. 

In Eq. (1) the coordinate system is simultaneously rotated for each function in 
the same way so that we have 

A IA IB V IC V ID ~ ( V  IA V IB I V IC V ID D (a~y ) ( r .Ar . s  I - - ,c - - ,o ,  = Y. E E E ,--,-A--,-~,--mc--mo) 
mA rnB 11"I C m D 

X ~[JmAnA ~Ol[J3")~lJmBnB 

(Ic)* (I D ) x ~,.~.~(a~V)~,.D.D (a~'r). 

By using the relations [4] 

(3) 

~(IA) rot '~ \~(IB) COt ~ -,nA-n,~t P'Y) t a B . s ( P Y )  

= ~ (2 'AB"[ -1 ) (  ~ A  IB l A B ) (  IA 'B IAB',.':..(IAB)* z ~ 
n A B  I ~D mABn AB ~ OqJ ~ ) 

lAB --  mB m A B /  \ --hA nB 
(4) 
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and 

( l ) *  m - - n  ( l )  9,.. (afly) = (-1) ~-m-.(afly) (5) 

the fourfold product in Eq. (3) can be simplified to 

(IA)* (I B ) (Ic)* (l D ) "A-A (aBY)~-,BnB (~fY)~,-~.~(~fY)~,-o.,, (afy)  

= ~. ~ (2IAn+I)(2lcD+I)(  ~ In IAB I 
IAB led - -  A mB m A B I  

X( 'C [D ICD~( 'A In IABI( lC 'D 'CD I 
- - m e  mD m C D /  X--nA nB n A B /  x - - n c  n o  nCD/ 

X (--I~mA--nAt--I~rac--nCt--I~mCD--nCD~ (lAB)* ( a a ~ , ~  (ico) Cot a'~,~ \ ] \ 1 k ] rtlABnAB \ ~.FI] --n, ICD--nCD\ ~ l } .  

(6) 

In the Wigner 3-j symbols in Eqs. (4) and (6) one has nAB = nA -- riB, and similarly 
for man, nco, and mCD. The range of values for lAB and lco is restricted by the 
"triangular condition" lA+ln>--laB>--Ila--IBI and lc+lo>-lco>-Ilc-lol. If 
Eq. (6) is introduced in Eq. (3) and Eq. (3) in Eq. (1) one obtains 

( yl& y~% l v'c vlD ~ n  c ~ n  D ) 

v l c  VID = T. Y. Y. X (Ym'~Y~B I--m~--,,o) 
tn A rn B tt~ C mr) 

x Y. y. (2IAB+I)(2lcD+I)(--1)"A--'~(--1)"C"C(--1)"CO--"cr~ 
lAB leD 

X (  lA lB l A B ) (  l c  [D lCD I 

\ - - m A  mB m A B /  \ - - m c  mD m C D /  

( I A  IB I A B I ( ' C  lD ICD I 

• --hA rib n A B / \ - - n c  nD nCD/ 

i 0 2 ~  , ~r 2-n- dO~Jo df sin f I ~ (lAB)* (IcD) dT ~'~AB"A~ (aft'y) ~--mcr,--.co (afT) 
X 2-rr r 2"n" 

Io d~ d f s i n f l o  dy 

(7) 

The integral in the denominator yields 8~r 2, and for the numerator one has the 
relation [4] 

2-rr Ir  2~r  

Io Io Io  ,co, de dfl sin fl d r  ~,..,,B.~,, (afy)~-m~o-.~o (afT) 

87r  2 

- 21An + 1 8"**B'-mc~176176 (8) 
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The rotational average (1) for standard spherical harmonics therefore yields 

V I A  V I B  V I c  ~,rlD ~ ( V  lm V I R  ~rrlc XTIo "I[')IAIBIcID 
~ n A ~ n B l ~ n c ~ n D / = ~ . . ~ \ - - m A - - m B l ~ m c ~ m D J ~ m A m B m c m D n A n B n c n D  

mA ttlB m c  rnD 

(9) 

where we have set 

~IAIBIcI  D 
mAmBmcmDnAnBncnD = Z (21 "]- 1 ) ( - - 1 ) ~ A - " " ( - - 1 )  " C " ~  ( - -1 )  ' ' ~ ~ 1 7 6  

I 

>( -- m A  mB mAB / \ -  m c  mD mCD 

X - - H A  n B  ] ' I A B / \ - - n c  n D  n C D  

• 8 r . ~ , - m ~ o ~ . ~ , - . ~ o ,  (10) 

and where the summation over  l is restricted by the condition 

Min (IA + IB, l c  + Im ) > - / - > M a x  ([IA-- IB[, [Ic -- Im[). 

3. Rotational Averages of Real Orthogonal Basis Sets 

Standard spherical harmonics are rarely used in numerical quantum chemical 
computat ions because of their complex nature. In general sets of irreducible or 
reducible real tensors are employed.  Irreducible real tensors X~r are related to 
the spherical harmonics by a unitary transformation 

X~r = ~  U r n Y  1 ( l l a )  
n 

y t  = ~  + ~ , t 
., U , . t X t  = ~  U t m X t .  ( l l b )  

t t 

The rotational average for the functions xlr  can be expressed with (11) 

( y t A  y t~  y t c  ~.lr, ~ = UrAnA UrB.~Urc, cUrr,,D( Y . A  YnB ] v i e  VlD - - r A - - r ~ ' - , ' c ' - , ' D ,  Z Z Z E  * * ~ '~ - . c - - o ,  
nA rib tt C tl D 

c v  t~vt~ v l ~ v t ~  ~O'tAt't~l~ (12) 
tAta tc tD 

where we have set 

~-~t IAIBIcl D ,~,~,c,orAr~rcro = E E Y E X X E l U*A,,,,U~B,,,,U*,~,,~UrD,,D 
mA mB m c  mD nA nB n c  nD 

rr  rr* U U* f~ ~ d g ~ , . o . ~ , ~ , ~  ,o. (13) tJ  tA mA ~ tBmB t c m c  tDmD 

In CDP calculations with irreducible tensors there are two real basis sets which 
are of practical interest, namely the irreducible Cartesian tensors Hlr [5] and 
the sets of equivalent orbitals Vj/g [6], where g is the dimension of the set and 
] takes the values 0, I . . . .  g -  1. For the Cartesian tensors the elements Um of 
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the unitary transformation matrix, consistent with our choice of phases in (10), 
follow from the equations 

H i  = r~0 

1 
Hic = (-1) x Y~ + ~  Y'-x 

(14) 
1 

His = " (-I)A Yi - / ~  Y~-~ 

=Imr. 
The most widely employed ab initio programs use reducible Cartesian tensors, 
however, for basis functions other than s and p orbitals. The integrals 
(~l 'lAy..l'lB I[..flcT_.TID "~ --t~--t~ --t~--t~, J must then be expressed as linear combinations of integrals 
over such basis functions. For standard real d orbitals e.g. one has the functional 
form 

HZ 1 2 = ~(2z - x 2 -  y2) 

H~s = 43zy 

H~c = ~/-3zx 

= 4 xy 

H 2 c  1 -  2 2 = ~ 4 3 ( x  - y ). 

(15) 

In terms of ab initio integrals calculated with a reducible set a typical CDP 
integral with the functions H~c and H 2 2c would thus be given by 

2 2 2 2 (H lcH lc IHzcHzc ) = ~(zx zx Ix 2x 2) _ 9(z x zx Ix 2y 2) 

_9(z  x zxly2x2) + 9(z x zxl y2y 2), (16) 

and similarly for integrals with other combinations of basis functions. 

Equivalent  orbitals are orbitals directed along the slant edges of a trigonal, 
pentagonal, heptagonal, etc. pyramid for p, d, f, etc. functions, respectively [6] 
[7]. Except for the p case, where the equivalent orbitals simply correspond to 
the ordinary Cartesian p functions in a rotated coordinate frame, there is always 
more than one set of equivalent orbitals. The functions of different sets have a 
different shape and the pyramids along the edges of which they are directed are 
more or less steep. For d orbitals two sets exist. They are obtained from the 
standard spherical harmonics, with the phase convention as used in this work, 
by the transformation matrix given in Table 1. 

As for Cartesian tensors the integrals over equivalent orbitals entering Eq. (12) 
will have to be expressed in terms of ab initio integrals, similarly to Eq. (16). 
Alternatively, they might be directly calculated from equivalent orbitals repres- 
ented by individual Gaussian functions. For d orbitals an optimized set has been 
suggested [8] with each orbital represented by three Gaussians. The use of such 
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functions in CDP calculations obviously leads to considerable computational 
savings. 

4. Space Averages and w Parameters 

The contracted density product equations (18) in Ref. [1] are invariant against 
orthogonal transformations. In order to be meaningful the to parameters entering 
the CDP calculations must be invariant against rotations of the coordinate system, 
i.e. the operations of 0+(3). The rotational averages as discussed in Sects. 2 and 
3 fulfill this requiremenl~. In addition it is desirable that the to parameters be 
independent of the handedness of the coordinate system in which the calculations 
are performed. This requires invariance against the operations of 0(3). We have 
defined the space averages in CDP calculations in such a way, as follows from 
Sect. II.D. and III.A., Ref. [1]. They are therefore obtained as the arithmetic 
mean of the rotational averages calculated in a left-handed and a right-handed 
coordinate system. 

For d and higher orbitals the to parameters are not yet uniquely defined by 
considering them to represent such space averages, even for a given functional 
form of the basis functions. This is apparent at once if one considers e.g. the 
space average (/.t/x Ivv) for d orbitals in Cartesian form. Four nonequivalent 
combinations of basis functions exist in this case and they all lead to different 
numerical values. This is illustrated by an example in Table 2. The CDP calcula- 
tions can be carried out correctly by using four values for to1, to2, and to3 each 
because the condition to2= (to0_tol)/2 [1] is fulfilled for each of the four sets 
of space averages. The computations become complicated, however, by the need 
to distinguish the different products of MO coefficients according to the particular 
values of to1, to2, and to3 by which they are to be multiplied. 

If the calculations are done with equivalent d orbitals the number of non- 
equivalent combinations of basis functions in CDP type integrals is reduced to 
two. The two combinations correspond to the situation where two different d 

Table 2. Numerical  values (10 -6 a.u.) of the space averages occurring in the to parameters  of a four 
centre integral for 3d orbitals in Cartesian form 

}[(~,' I p,,~') }[(~,~ ] p,v) 
( , ~ l ~ )  (~ ]v~ , )  + (m.,I ~,~)] - (~ '  I ,-',~)] 

/x = H i ,  v = {H~o H~s} 86.37 324.78 -119 .21  0.32 
tt = H i ,  v = {H~o H~s} 86.37 251.75 - 8 2 . 6 9  69.24 
/x = H~o  v = H2~ 86.37 276.10 - 9 4 . 8 7  46.27 

2 2 2 2 
v = {H2o H2s } 86.37 /z = { H l o  HI~} 276.10 - 9 4 . 8 7  46.27 

/z = H~o  v = H22, 86.37 349.12 - 1 3 1 . 3 8  - 2 2 . 6 6  

The  four atoms were arbitrarily chosen to be Fe, Ti, V and Cr located at (a.u.) (0, 0, 0), (2, - 2 ,  1), 
(2, 3, 1.5) and ( -1 ,  1.2, 3) respectively. The exponents  and contraction coefficients of the Gaussian 
basis set were taken from Wachters,  A. J. H.: J. Chem.  Phys. 52, 1033 (1970) 
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Table 3, Numerical values (10 -6 a,u.) of the space averages occurring in the ~o parameters for 3d 
orbitals in equivalent form 

(~1~*)  (**~*1~',,) ~[(**~'1~')+(~'1~'~*)] ~[(,-,I,~')-(,-,t~'~)] 

a l, z = V o l s ,  v = V l l s  86.37 312.87 -113.25 11.57 
Iz = V o l s ,  ~ = V21s 86.37 263.67 -88.65 58.00 

b 
tz = Vo/5 ,  u = V1/5  86.37 270.20 -91.92 51.84 
/z = Vo/s, v = V2/5 86.37 306.33 -109.98 17.73 

a For the steep set 
b For the shallow set 
The atoms, geometry, and the exponents and contraction coefficients of the Gaussian basis set in 
Cartesian form are the same as in Table 2 

orbitals are directed along ne ighbour ing  and non-ne ighbour ing  edges of a 
pen tagona l  b ipyramide,  respectively. This is illustrated by the numerical  results 
collected in Table  3 for the two sets of equivalent  orbitals. Again,  as for  the 
Cartesian set, one  finds for the mos t  general  si tuation of a four  centre  integral, 
to which the figures of Tables  2 and 3 correspond,  that  the condit ion o)2= 
(o90_ o91)/2 holds in all cz[ses, and that  m o r e o v e r  o9o assumes the same value for 
all three basis sets. 

The  distinction be tween different combina t ions  of functions of the same set of 
irreducible tensors can be a l together  el iminated by taking the a r i t h m e t i c  m e a n  

of the space averages for all combinat ions  of orbitals occurr ing in C D P  type 
integrals. One  then has 

o 1 
= -  Y~ (tit* ~[~)  (18a) 

g/*=l 

1 1 g 
1" E ( t t t t luv)  (18b) o9 g ( g _  ) , * ~  

o9 - 2 g ( g -  l~) ~ 

3 _  1 (18d) 
o9 2 g ( g  - 1) 

With  this definition the w parameters  assume identical values for Cartesian and 
equivalent  d orbitals as follows f rom Tables 2 and 3. This p roper ty  is general  
for  d orbitals in real  fo rm [9]. 

5. C o n c l u s i o n s  

The rota t ional  averages of products  of spherical tensors can be expressed as 
sums of products  of Wigner  3-/" symbols.  This allows the calculation of the space 
averages of arbi t rary two electron integrals in molecular  orbital calculations, 
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and thus of the to parameters  of the fully or  part ly contrac ted  schemes which 
are possible within the f rame of the contracted density produc t  idea. Explicit 
numerical  results for  the most  general  case of a four  center  two electron integral 
show that  the condit ion to 2=  ( t o ~  crucial for the validity of the C D P  
equations,  is fulfilled for d orbitals in real Cartesian form, or  in the form of 
equivalent  orbitals, if the to's are considered to represent  space averages. The  
concept ion  of space averages leads to difficulties for C D P  calculations with f 
and higher orbitals, or  with basis functions in complex form, as will be shown 
in a subsequent  publicat ion [9]. In such cases a re in terpre ta t ion of the to's in 
terms of invariants is required.  The  use of equivalent  orbitals, rarely considered 
up to now in quan tum chemical calculations, reduces the number  of possible 
combinat ions  of different basis functions in C D P  type integrals. 

If two electron integrals are evaluated directly for such basis functions,  as has 
been  suggested [8], the computa t iona l  work  for forming the space averages is 
considerably reduced.  Conceptual ly  more  important ,  though,  is the fact that  
equivalent  orbitals  can be considered to be the "na tu ra l "  basis functions in C D P  
type calculations where  the major i ty  of the differences be tween local electron-  
e lectron interact ion terms is systematically swamped  out. 

Acknowledgment. The authors express their gratitude to Mr. F. Benett for his help in adapting an 
IBMOL VI program to the calculation of the ab initio integrals required for their ~o parameters. 
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