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The Evaluation of ® Parameters in Contracted Density
Product Calculations
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General formulas for the rotational averages of two electron integrals with
arbitrary combinations of spherical tensors in standard, Cartesian, and
equivalent form are presented. The way in which the w parameters of CDP
type calculations can be obtained from rotational averages is discussed, and
it is shown from numerical results that the interpretation of the w parameters
as space averages is compatible up to d orbitals with the CDP invariance
requirements.

Key words: Space averages of two electron integrals — w parameters —
CDP-MO calculations.

1. Introduction

Electron-electron interaction terms entail the most expense in quantum chemical
calculations of molecules and aggregates. In a recent paper [1] we have shown
how two electron integrals over basis functions can be neglected in a systematic
way without violating transformation invariance. In particular it was found that
groups of integrals can be replaced by their space averages dubbed w parameters
in [1]. The use of such space averages could be of particular interest also in the
calculation of intermolecular interactions in systems with a random or rapidly
changing orientation of the molecules.

Formulas to evaluate the o parameters from exact integrals have been given in
[1] for basis functions up to 3p orbitals in Cartesian form. In this work we
present first the formulas for general rotational averages of two electron integrals
with arbitrary combinations of basis functions, with the only requirement that
their angular part must span representations of O"(3). We then show how the
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space averages for CDP calculations are related to these rotational averages,
and how w parameters can be defined for real d orbitals.

The radial parts of the basis functions as well as the electron-electron interaction
operator are omitted in our discussion because they are scalars and remain
invariant under the operations of O(3). Thus, the angular part only of the basis
functions is of concern to us. It can always be expressed by linear combinations
of spherical harmonics. We therefore first derive the rotational averages of
spherical harmonics in standard form [2] with the phase convention as used by
Condon and Shortley [3], and use this result in turn to evaluate the rotational
averages of two electron integrals over other basis functions.

2. Rotational Averages of Products of Standard Spherical Harmonics

The rotational average of a two electron integral with the standard spherical
harmonics Yﬁ{; located at the centers A, B, C, and D can be written as

2ar

J2" da J dp sin BJ dyD(eBy)(YaY |Yiey)

T T Y 0
(Y'&Y'{L | Y'%YVE)) = 2 ar 27
J da J dp sin 8 J dvy
0 0 o

0y

a, B, and vy are the Eulerian angles w1th the integration extending over the
domain of their allowed ranges, and D(aBy) is the rotation operator effecting
a rotation of the coordinate system by positive angles. The effect of D(aBy) on
a single function is given by

D(aBy)Y, =Y Y@ (aBy) )

with @, representing elements of Wigner rotation matrices.

In Eq. (1) the coordinate system is simultaneously rotated for each function in
the same way so that we have

D(aBy)(YaYs |Yieyr)=Y 5 ¥ ¥ (Ya,YE |V Y,
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and
Do (@By) = (~1)" "D (aBY) (5)
the fourfold product in Eq. (3) can be simplified to

DY) (aBY)DE, (aBY) DS (aBY)D ) (aBy)

=y 3 (21A3+1)(2[CD+1)( Ia Is IAB)
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X (—1)ma™"a(=1)"e e (= 1) "o "en @ lasy (aBy) DI, ner(@BY).

(6)

In the Wigner 3-j symbols in Egs. (4) and (6) one has nsp = n4 — ng, and similarly
for mag, ncp, and mcp. The range of values for l4p and Iop is restricted by the
“triangular condition” IA + IB = lAB = IlA - IBI and lc + lD = lCD = |lc - ID| If
Eq. (6) is introduced in Eq. (3) and Eq. (3) in Eq. (1) one obtains
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The integral in the denominator yields 872, and for the numerator one has the
relation [4]
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The rotational average (1) for standard spherical harmonics therefore yields

(YaYalYeYe)=3 L T L (Va5 |YEYe)0nsss

mampmcmphiAngicnp
ma mpg mc mp

9)

where we have set

Qi sRomomansnono = & 21+ 1)(-1) ™4 (=1) e (-1 e e
x( Ia g l )( Ic Ip [ )
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and where the summation over [ is restricted by the condition

map,—Mcp

Min (IA+ lB, lc +lD) = [ =Max (llA~lB'9 llc —IDD-

3. Rotational Averages of Real Orthogonal Basis Sets

Standard spherical harmonics are rarely used in numerical quantum chemical
computations because of their complex nature. In general sets of irreducible or
reducible real tensors are employed. Irreducible real tensors X ! are related to
the spherical harmonics by a unitary transformation

X, =Y U,Yn (11a)
Yo=Y UnXi=YULX,. . (11b)
t t

The rotational average for the functions X ! can be expressed with (11)

XaXBIXeXB)=Y Y T Y Uk UpnoUlkncUnpnn( YA Y B Y 2Y R,

na Rg Rc np

=Y Y Y Y (XAXE | XX B)QUABSE e (12)

ia g lc D

where we have set

gl
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ma mg mc mp RA g nC D
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In CDP calculations with irreducible tensors there are two real basis sets which
are of practical interest, namely the irreducible Cartesian tensors H ' [5] and
the sets of equivalent orbitals Vj,, [6], where g is the dimension of the set and
j takes the values 0, 1,...g—1. For the Cartesian tensors the elements U,, of
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the unitary transformation matrix, consistent with our choice of phases in (10),
follow from the equations

H =Y}
1 1
Hi. =—=CD'"Y, +—Y"
) N
(14)
1 1
Hy =—-1D)'Y,-——=Y"
NG N
A =|m|.

The most widely employed ab initio programs use reducible Cartesian tensors,
however, for basis functions other than s and p orbitals. The integrals
(Hi4H @ |HSH2) must then be expressed as linear combinations of integrals
over such basis functions. For standard real d orbitals e.g. one has the functional
form

Ho=32z"-x*~y%

H3, =~/§zy
H?, =V3zx (15)
Hj, :\/gxy

H3, =3V3(x*-y?).

In terms of ab initio integrals calculated with a reducible set a typical CDP
integral with the functions Hi. and H. would thus be given by

(HiH3. |H3H5) = 3(zx zx|x2x%) — $(zx zx|x*y?)
—3(zx zx|y*x D) +5(zx zx|y?y D), (16)
and similarly for integrals with other combinations of basis functions.

Equivalent orbitals are orbitals directed along the slant edges of a trigonal,
pentagonal, heptagonal, etc. pyramid for p, d, f, etc. functions, respectively [6]
[7]. Except for the p case, where the equivalent orbitals simply correspond to
the ordinary Cartesian p functions in a rotated coordinate frame, there is always
more than one set of equivalent orbitals. The functions of different sets have a
different shape and the pyramids along the edges of which they are directed are
more or less steep. For d orbitals two sets exist. They are obtained from the
standard spherical harmonics, with the phase convention as used in this work,
by the transformation matrix given in Table 1.

As for Cartesian tensors the integrals over equivalent orbitals entering Eq. (12)
will have to be expressed in terms of ab initio integrals, similarly to Eq. (16).
Alternatively, they might be directly calculated from equivalent orbitals repres-
ented by individual Gaussian functions. For d orbitals an optimized set has been
suggested [8] with each orbital represented by three Gaussians. The use of such
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functions in CDP calculations obviously leads to considerable computational
savings.

4. Space Averages and o Parameters

The contracted density product equations (18) in Ref. [1] are invariant against
orthogonal transformations. In order to be meaningful the @ parameters entering
the CDP calculations must be invariant against rotations of the coordinate system,
i.e. the operations of O"(3). The rotational averages as discussed in Sects. 2 and
3 fulfill this requirement. In addition it is desirable that the w parameters be
independent of the handedness of the coordinate system in which the calculations
are performed. This requires invariance against the operations of O(3). We have
defined the space averages in CDP calculations in such a way, as follows from
Sect. IL.D. and III.A., Ref. [1]. They are therefore obtained as the arithmetic
mean of the rotational averages calculated in a left-handed and a right-handed
coordinate system.

For d and higher orbitals the @ parameters are not yet uniquely defined by
considering them to represent such space averages, even for a given functional
form of the basis functions. This is apparent at once if one considers e.g. the
space average (uu |vv) for d orbitals in Cartesian form. Four nonequivalent
combinations of basis functions exist in this case and they all lead to different
numerical values. This is illustrated by an example in Table 2. The CDP calcula-
tions can be carried out correctly by using four values for ', »?, and w> each
because the condition w>=(w®—w')/2 [1] is fulfilled for each of the four sets
of space averages. The computations become complicated, however, by the need
to distinguish the different products of MO coefficients according to the particular
values of ', @, and o> by which they are to be multiplied.

If the calculations are done with equivalent d orbitals the number of non-
equivalent combinations of basis functions in CDP type integrals is reduced to
two. The two combinations correspond to the situation where two different d

Table 2. Numerical values (107 a.u.) of the space averages occurring in the w parameters of a four
centre integral for 3d orbitals in Cartesian form

1 1
luv]|pr) al (v | uy)
(wplpw)  (ue]ww) +urlm)]  —(ur|wp)]

u=H? v={H?, Hi)} 86.37 324.78 -119.21 0.32
w=H2, v={H2, H} 86.37 251.75 -82.69 69.24
w=H?, v=H?2, 86.37 276.10 —-94.87 46.27
w={Hi, H3,} v={Hj., H3} 86.37 276.10 —-94.87 46.27
w=H3., v=H2, 86.37 349.12 -131.38 —22.66

The four atoms were arbitrarily chosen to be Fe, Ti, V and Cr located at (a.u.) (0,0, 0), (2, -2, 1),
(2, 3, 1.5) and (~1, 1.2, 3) respectively. The exponents and contraction coefficients of the Gaussian
basis set were taken from Wachters, A. J. H.: J. Chem. Phys. §2, 1033 (1970)
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Table 3. Numerical values (107% a.u.) of the space averages occurring in the o parameters for 34
orbitals in equivalent form

(i lpw)  (pplvw)  Hpelpo)+(uelow)] Hwe|ww) — (v ]vg)]

2 M= V0/5, v = V1/5 86.37 312.87 -113.25 11.57
w=Vos, v=Vys 8637 263.67 -88.65 58.00
"u=Vys, »=Vys 8637 270.20 -91.92 51.84
w=Vos v=Vys 8637 306.33  —109.98 17.73

® For the steep set

® For the shallow set

The atoms, geometry, and the exponents and contraction coefficients of the Gaussian basis set in
Cartesian form are the same as in Table 2

orbitals are directed along neighbouring and non-neighbouring edges of a
pentagonal bipyramide, respectively. This is illustrated by the numerical results
collected in Table 3 for the two sets of equivalent orbitals. Again, as for the
Cartesian set, one finds for the most general situation of a four centre integral,
to which the figures of Tables 2 and 3 correspond, that the condition w’=
(w®—®")/2 holds in all cases, and that moreover »° assumes the same value for
all three basis sets.

The distinction between different combinations of functions of the same set of
irreducible tensors can be altogether eliminated by taking the arithmetic mean
of the space averages for all combinations of orbitals occurring in CDP type
integrals. One then has

w°=§§1 (e Tags) (182)
, 1 s

w =mﬂ§y[(w|w)+(uv|vu)] (18¢)

R (T e Py (184)
286-1) 2.

With this definition the w parameters assume identical values for Cartesian and
equivalent d orbitals as follows from Tables 2 and 3. This property is general
for d orbitals in real form [9].

5. Conclusions

The rotational averages of products of spherical tensors can be expressed as
sums of products of Wigner 3-j symbols. This allows the calculation of the space
averages of arbitrary two electron integrals in molecular orbital calculations,
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and thus of the w parameters of the fully or partly contracted schemes which
are possible within the frame of the contracted density product idea. Explicit
numerical results for the most general case of a four center two electron integral
show that the condition w”=(w’—w")/2, crucial for the validity of the CDP
equations, is fulfilled for d orbitals in real Cartesian form, or in the form of
equivalent orbitals, if the w’s are considered to represent space averages. The
conception of space averages leads to difficulties for CDP calculations with f
and higher orbitals, or with basis functions in complex form, as will be shown
in a subsequent publication [9]. In such cases a reinterpretation of the w’s in
terms of invariants is required. The use of equivalent orbitals, rarely considered
up to now in quantum chemical calculations, reduces the number of possible
combinations of different basis functions in CDP type integrals.

If two electron integrals are evaluated directly for such basis functions, as has
been suggested [8], the computational work for forming the space averages is
considerably reduced. Conceptually more important, though, is the fact that
equivalent orbitals can be considered to be the ‘“natural” basis functions in CDP
type calculations where the majority of the differences between local electron-
electron interaction terms is systematically swamped out.
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